Comparison of direction and object selectivity of local field potentials and single units in macaque posterior parietal cortex during prehension.
نویسندگان
چکیده
Recent studies have shown that the local field potential (LFP) can provide a simple method for obtaining an accurate measure of reaching and saccade behaviors. However, it is not clear whether this signal is equally informative with respect to more complex movements. Here we recorded LFPs and single units (SUs) from different areas in the posterior parietal cortex of macaques during a prehension task and compared LFP selectivity with SU selectivity. We found that parietal LFPs were often selective to target direction or object and that percentages of selective LFPs were similar to percentages of selective SUs. Nevertheless, SUs were more informative than LFPs in several respects. Preferred directions and objects of LFPs usually deviated from a uniform distribution, unlike preferences of SUs. Furthermore, preferences of LFPs did not reflect preferences of SUs even when the two signals were recorded simultaneously via the same electrode. Additionally, selectivity of movement-evoked LFPs appeared only after movement onset, whereas SUs frequently showed premovement selectivity. Spectral analysis revealed a lower signal-to-noise ratio of the LFP signal. Different frequency bands derived from a single LFP site showed inconsistent preferences. Significant relations with target parameters were found for all tested bands of LFP, but effects in the fast (gamma) band exhibited properties that were consistent with contamination of the LFP by residual spiking activity. Taken together, our results suggest that the LFP provides a simple method for extracting ample movement-related information. However, some of its properties make it less adequate for predicting rapidly changing movements.
منابع مشابه
Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque.
In humans, the caudal pole of the superior parietal lobule is involved in the control of both reaching and grasping movements, whereas in monkey it is reported to be involved only in the control of reaching. Using single-unit recordings from trained macaque monkeys, we investigated whether area V6A, a visuomotor area located in the caudal part of the posterior parietal cortex, is involved in bo...
متن کاملCortical Local Field Potential Encodes Movement Intentions in the Posterior Parietal Cortex
The cortical local field potential (LFP) is a summation signal of excitatory and inhibitory dendritic potentials that has recently become of increasing interest. We report that LFP signals in the parietal reach region (PRR) of the posterior parietal cortex of macaque monkeys have temporal structure that varies with the type of planned or executed motor behavior. LFP signals from PRR provide bet...
متن کاملThe Binding of Reaching and Grasping Movements in the Parietal Cortex: An Electrophysiological Study
Prehension is a complex, multi-joint arm movement that involves coordinated reaching and grasping. Prehension movements are known to be planned and controlled by multiple brain areas, but little is known about the mechanisms involved in binding together the activity in these areas to produce a smooth and coordinated movement profile. In the present study I trained macaques to perform a delayed ...
متن کاملDissociation between local field potentials and spiking activity in macaque inferior temporal cortex reveals diagnosticity-based encoding of complex objects.
Neurons in the inferior temporal (IT) cortex respond selectively to complex objects, and maintain their selectivity despite partial occlusion. However, relatively little is known about how the occlusion of different shape parts influences responses in the IT cortex. Here, we determine experimentally which parts of complex objects monkeys are relying on in a discrimination task. We then study th...
متن کاملThe dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey.
Brain control of prehension is thought to rely on two specific brain circuits: a dorsomedial one (involving the areas of the superior parietal lobule and the dorsal premotor cortex) involved in the transport of the hand toward the object and a dorsolateral one (involving the inferior parietal lobule and the ventral premotor cortex) dealing with the preshaping of the hand according to the featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2007